Resolution

As it is well known, the XOR function can be implemented as:

(2.1.)
[image: image1.wmf]Y

X

Y

X

Y

X

+

=

Therefore, we need one perceptron that implements the OR function, designed in problem 2.2, and we can adapt the perceptron that implements the AND function to compute each one of the two terms in eq. (2.1.).

The net input of a perceptron is:

(2.2.)
[image: image2.wmf]q

+

+

=

y

w

x

w

net

2

1

If we substitute the term x1 in the last equation by (1-x), it is obvious that the perceptron will implement the boolean function
[image: image3.wmf]y

x

. This involves the following change of weights:

(2.3.)
[image: image4.wmf](

)

(

)

1

2

1

2

1

w

y

w

x

w

y

w

x

1

w

net

+

q

+

+

-

=

=

q

+

+

-

=

Therefore, if the sign of weight 1 is changed, and the 3rd weight is changed to
[image: image5.wmf]1

w

+

q

, then the original AND function implements the function
[image: image6.wmf]y

x

.

Using the same reasoning, if the sign of weight 2 is changed, and the 3rd weight is changed to
[image: image7.wmf]2

w

+

q

, then the original AND function implements the function
[image: image8.wmf]y

x

.

Finally, if the perceptron implementing the OR fucntion is employed, with the outputs of the previous perceptrons as inputs, the XOR problem is solved.

The weights of the first perceptron, implementing the
[image: image9.wmf]y

x

 function, are: [-0.1 0.05 0]. The weights of the second perceptron, implementing the
[image: image10.wmf]y

x

 function, are: [0.1 -0.05 –0.05]. The weights of the third perceptorn, implementing the OR function, are: [0.05 0.05 –0.05].

The following table illustrates the results of the network structure related to the training patterns. In the table, y1 implements the
[image: image11.wmf]y

x

 function and y2 is the output of the
[image: image12.wmf]y

x

 fucntion As it can be seen, the mutlilayer perceptron implements the XOR function.

For a Matlab resolution, please see the data files AND and OR.m, the functions perlearn.m, perrecal.m and XOR.m.
.

Iteration
inp1
inp2
y1
y2
y

1
0
1
1
0
1

2
0
0
0
0
0

3
1
1
0
0
0

4
1
1
0
0
0

5
0
0
0
0
0

6
1
1
0
0
0

7
1
1
0
0
0

8
0
0
0
0
0

9
1
0
0
1
1

10
1
1
0
0
0

11
0
0
0
0
0

12
1
1
0
0
0

13
0
1
1
0
1

14
1
1
0
0
0

15
0
1
1
0
1

16
1
1
0
0
0

17
1
1
0
0
0

18
1
0
0
1
1

19
0
0
0
0
0

20
0
0
0
0
0

21
0
1
1
0
1

22
0
0
0
0
0

23
1
1
0
0
0

24
1
1
0
0
0

25
0
0
0
0
0

26
1
1
0
0
0

27
1
1
0
0
0

28
0
0
0
0
0

29
1
0
0
1
1

30
1
1
0
0
0

31
0
0
0
0
0

32
1
1
0
0
0

33
0
1
1
0
1

34
1
1
0
0
0

35
0
1
1
0
1

36
1
1
0
0
0

37
1
1
0
0
0

38
1
0
0
1
1

39
0
0
0
0
0

40
0
0
0
0
0

Table 2.1 – Network of perceptrons implementing the XOR function

_985674544.unknown

_985687037.unknown

_985687045.unknown

_985686939.unknown

_985600906.unknown

_985601143.unknown

_985600707.unknown

