Subsections

Tabelas e relações particulares

Transformada de Fourier

\includegraphics[height=180mm]{figs/a2-f1.eps}

truecm

\includegraphics[height=180mm]{figs/a2-f2.eps}

Relações Trigonométricas Usuais

sin2x + cos2x = 1        cos2x = $\displaystyle {{1+\cos 2x}\over 2}$        sin2x = $\displaystyle {{1-\cos 2x}\over 2}$

mathend000#

sin x = $\displaystyle {{e^{jx} - e^{-jx}}\over 2j}$        cos x = $\displaystyle {{e^{jx} + e^{-jx}}\over 2}$        tan x = $\displaystyle {{e^{jx} - e^{-jx}}\over
{j(e^{jx} + e^{-jx})}}$

mathend000#

Adição

sin(a + b) = sin a cos b + sin b cos a        sin(a - b) = sin a cos b - sin b cos a

mathend000#

cos(a + b) = cos a cos b - sin a sin b        cos(a - b) = cos a cos b + sin a sin b

mathend000#

tan(a + b) = $\displaystyle {{\tan a + \tan b}\over {1-\tan a \tan b}}$        tan(a - b) = $\displaystyle {{\tan a - \tan b}\over {1+\tan a \tan b}}$

mathend000#

Multiplicação: com tan a = t mathend000#

sin(2a) = 2 sin a cos a = $\displaystyle {{2t}\over {1+t^2}}$

mathend000#

cos(2a) = cos2a - sin2a = 2 cos2a - 1 = 1 - 2 sin2a = $\displaystyle {{1-t^2}\over {1+t^2}}$

mathend000#

tan(2a) = $\displaystyle {{2\tan a}\over {1-\tan^2 a}}$ = $\displaystyle {{2t}\over {1-t^2}}$

mathend000#

cos a cos b = $\displaystyle {1\over 2}$[cos(a + b) + cos(a - b)]        sin a sin b = $\displaystyle {1\over 2}$[cos(a - b) - cos(a + b)]

mathend000#

sin a cos b = $\displaystyle {1\over 2}$[sin(a + b) + sin(a - b)]

mathend000#

cos p + cos q = 2 cos$\displaystyle {{p+q}\over 2}$cos$\displaystyle {{p-q}\over 2}$        cos p - cos q = - 2 sin$\displaystyle {{p+q}\over 2}$sin$\displaystyle {{p-q}\over 2}$

mathend000#

sin p + sin q = 2 sin$\displaystyle {{p+q}\over 2}$cos$\displaystyle {{p-q}\over 2}$        sin p - sin q = 2 sin$\displaystyle {{p-q}\over 2}$cos$\displaystyle {{p+q}\over 2}$

mathend000#

tan p + tan q = $\displaystyle {{\sin(p+q)}\over {\cos p \cos q}}$        tan p - tan q = $\displaystyle {{\sin(p-q)}\over {\cos p \cos q}}$

mathend000#

Trigonometria Hiperbólica

cosh x + sinh x = exp(x)        cosh x - sinh x = exp(- x)        cosh2x - sinh2x = 1

mathend000#

sinh(a + b) = sinh a cosh b + sinh b cosh a        sinh(a - b) = sinh a cosh b - sinh b cosh a

mathend000#

cosh(a + b) = cosh a cosh b + sinh a sinh b        cosh(a - b) = cosh a cosh b - sinh a sinh b

mathend000#

sinh 2a = 2 sinh a cosh a        cosh 2a = cosh2a sinh2a = 1 + 2 sin2a = 2 cosh2a - 1

mathend000#

cosh2a = $\displaystyle {{1+\cosh 2a}\over 2}$        sinh2a = $\displaystyle {{\cosh 2a -1}\over 2}$        tanh2a = $\displaystyle {{\cosh 2a -1}\over
{\cosh 2a +1}}$

mathend000#

tanh 2a = $\displaystyle {{2\tanh a}\over {1+\tanh^2 a}}$

mathend000#

sinh x = $\displaystyle {{e^{x} - e^{-x}}\over 2}$        cosh = $\displaystyle {{e^{x} + e^{-x}}\over 2}$        tanh = $\displaystyle {{e^{x} - e^{-x}}\over
{e^{x} + e^{-x}}}$

mathend000#

cosh jx = cos x        sinh jx = j sin x        tanh jx = j tan x

mathend000#

Desenvolvimentos em série

sin x = x - $ {{x^3}\over {3!}}$ + $ {{x^5}\over {5!}}$ +...+ (- 1)n$ {{x^{2n+1}}\over {(2n+1)!}}$ + x2n+1$ \epsilon$(x) mathend000#

cos x = 1 - $ {{x^2}\over {2!}}$ + $ {{x^4}\over {4!}}$ +...+ (- 1)n$ {{x^{2n}}\over {(2n)!}}$ + x2n$ \epsilon$(x) mathend000#

tan x = x - $ {{x^3}\over {3}}$ + $ {{2x^5}\over {15}}$ + x5$ \epsilon$(x) mathend000#

sinh x = x + $ {{x^3}\over {3!}}$ +...+ $ {{x^{2n-1}}\over {(2n-1)!}}$ + x2n-1$ \epsilon$(x) mathend000#

cosh x = 1 + $ {{x^2}\over {2!}}$ +...+ $ {{x^{2n}}\over {(2n)!}}$ + x2n$ \epsilon$(x) mathend000#

tanh x = x - $ {{x^3}\over {3}}$ + $ {{2x^5}\over {15}}$ + x5$ \epsilon$(x) mathend000#

arcsin x = x + $ {{x^3}\over {6}}$ +...+ $ {{1.3.5\ldots(2n+1)}\over {2.4.6\ldots(2n)}}$$ {{x^{2n+1}}\over {(2n+1)!}}$ - x2n+1$ \epsilon$(x) mathend000#

arctan x = x - $ {{x^3}\over {3}}$ + $ {{x^5}\over {5}}$ +...+ (- 1)n$ {{x^{2n+1}}\over {(2n+1)!}}$ + x2n+1$ \epsilon$(x) mathend000#

sinh-1x = x - $ {{x^3}\over {6}}$ +...+ (- 1)n$ {{1.3.5\ldots(2n+1)}\over {2.4.6\ldots(2n)}}$$ {{x^{2n+1}}\over {(2n+1)!}}$ + x2n+1$ \epsilon$(x) mathend000#

tanh-1x = x + $ {{x^3}\over {3}}$ + $ {{x^5}\over 5}$ +...+ $ {{x^{2n+1}}\over {(2n+1)!}}$ + x2n+1$ \epsilon$(x) mathend000#

ex = 1 + x + $ {{x^2}\over {2!}}$ + $ {{x^3}\over {3!}}$ +...+ $ {{x^n}\over {n!}}$ + xn$ \epsilon$(x) mathend000#

log(1 + x) = x - $ {{x^2}\over {2}}$ + $ {{x^3}\over {3}}$ +...+ (- 1)n-1$ {{x^n}\over {n}}$ + xn$ \epsilon$(x) mathend000#

(1 + x)$\scriptstyle \alpha$ = 1 + $ \alpha$x + $ \alpha$($ \alpha$ -1)$ {{x^2}\over {2}}$ +...+ $ \alpha$($ \alpha$ -1)...($ \alpha$ - n + 1)$ {{x^n}\over {n}}$ + xn$ \epsilon$(x) mathend000#

$ {1\over {1-x}}$ = 1 + x + x2 +...+ xn + xn$ \epsilon$(x) mathend000#

$ {1\over {1+x}}$ = 1 - x + x2 - x3 +...+ (- 1)nxn + xn$ \epsilon$(x) mathend000#

Algumas relações úteis

Integrais

$ \int_{0}^{{\infty}}$e-ax2dx = $ {1\over 2}$$ \sqrt{{\pi\over a}}$ mathend000#

$ \int_{0}^{{\infty}}$xe-ax2dx = $ {1\over 2a}$ mathend000#

$ \int_{0}^{{\infty}}$x2e-ax2dx = $ {{\sqrt{\pi}}\over {4a^{3/2}}}$ mathend000#

$ \int_{0}^{{\infty}}$x3e-ax2dx = $ {1\over {2a^2}}$ mathend000#

$ \int_{0}^{{\infty}}$x4e-ax2dx = $ {3\over {8a^2}}$$ \sqrt{{\pi\over a}}$ mathend000#

Séries

Geométrica: u1 + qu1 + q2u1 +...+ qn-1u1 = u1$ {{1-q^n}\over {1-q}}$ mathend000#

Aritmética: u1 + qu1 +2qu1 +...+ (n - 1)qu1 = mathend000#

Derivadas

[af(x)]' = log aaf(x)f'(x) mathend000#

Trigonometria do círculo

  0 $ \pi$$ \over$6 mathend000# $ \pi$$ \over$4 mathend000# $ \pi$$ \over$3 mathend000# $ \pi$$ \over$2 mathend000#
sin x mathend000# 0 1/2 $ \sqrt{{2}}$/2 mathend000# $ \sqrt{{3}}$/2 mathend000# 1
cos x mathend000# 1 $ \sqrt{{3}}$/2 mathend000# $ \sqrt{{2}}$/2 mathend000# 1/2 0
tan x mathend000# 0 $ \sqrt{{3}}$/3 mathend000# 1 $ \sqrt{{3}}$ mathend000# $ \infty$ mathend000#
cot x mathend000# $ \infty$ mathend000# $ \sqrt{{3}}$ mathend000# 1 $ \sqrt{{3}}$/3 mathend000# 0


Sergio Jesus 2008-12-30