LAB 05 - Inversor CMOS

A. CARACTERÍSTICA DC

1. Use o PSPICE e trace a característica de transferência DC $V_{out} = f(V_{in})$ do inversor da figura

O "setup" do varrimento DC desejado é configurado na seguinte janela:

DC Sweep		×
Swept Var. Type	Name:	VIN
Voltage Source	riano.	1
C Temperature	Model Tupe:	
C Current Source	moder rype.	
C Model Parameter	Model Name:	
C Global Parameter	Param. Name:	
- Sweep Type	Start Value:	0
• Linear	En d Velver	E.
C Octave	End Value:	
C Decade	Increment:	0.1
O Value List	Values:	
Nested Sweep	ОК	Cancel

a) do gráfico determine VIH, VIL, VOL, VOH, e a tensão de comutação VIN=VOUT=VM

b) Re-dimensione o transistor PMOS de forma a que a tensão de comutação seja VM=VDD/2

B. RESPOSTA DINÂMICA

Com o mesmo circuito da figura, mas agora utilizando uma onda quadrada como sinal de entrada trace a resposta dinâmica do inversor.

A onda quadrada é realizada com uma fonte VPULSE com os seguintes parâmetros: V1=0V V2=5V TD=0s TR=0.1ns TF=0.1ns PW=2.5ns PER=5ns

As condições de simulação "transient" são as seguintes:

Transient	×
Transient Analysis	
Print Step:	0.1ns
Final Time:	10ns
No-Print Delay:	
Step Ceiling:	
🔲 Detailed Bias Pt.	
🔲 Skip initial transient so	lution
Fourier Analysis	
🔲 Enable Fourier	
Center Frequency:	
Number of harmonics	:
Output Vars.:	
OK	Cancel

1. A partir do gráfico obtido obtenha os tempos de propagação TP_{LH} e TP_{HL}. Compare com os valores obtidos teóricamente

C. OSCILADOR EM ANEL

Com o inversor da figura construa um oscilador em anel com 5 elementos. Faça uma análise transiente. Determine o tempo de propagação Tp de cada elemento e o periodo de oscilação T. Compare com os valores teóricos.

1. O primeiro passo é tornar o inversor da figura um sub-circuito e criar um simbolo:

Repare que foram introduzidas 2 variaveis entrada e saída (IF_IN, IF_OUT) e uma variável global (GLOBAL) e dados nomes apropriados a essas variáveis (IN, OUT, VDD)

2. O passo seguinte é criar um simbolo utilizando o menu File > Symbolize > Enter name for current symbol: inversor

E escolher uma livraria para guardar o novo simbolo (por exemplo: symbol.slb):

Choose Library (for Schematic Syr	nbol			? ×
Look in:	: 🔄 UserLib		•	- 🗈 💣 🎟 -	
My Recent Documents Desktop Desktop Leuven	Alixo.sib symbols.sib wcn20.sib				
	, File name:	symbols.slb		•	Open
	Files of type:	Symbol Library Files (*.slb)		•	Cancel

3. O passo seguinte é verificar se o simbolo foi correctamente contruido e edita-lo se necessario, utilizando o menu File > Edit library > File > Open > Symbols.slb

4. Segue-se agora editar o simbolo utilizando o menu Get > Part Name: inversor Altere o nome do simbolo para "INV?"

	INV? VDD		
Get Part Name: inversor			
opamp VSRC schmitt CMOSN3 CMOSP3			
Cancel	0		

(Podes---é opcional!---alterar o "shape do simbolo para um triângulo com uma bola no vertice...)

5. Altere o pin "OUT" com o menu Part > Pin List ... If unconnected Float=Unique Net

Pin List		
Pin Name: Display Type:	OUT Name normal	OUT IN VDD Q
Orient:	horizontal 💌	
Hjust:	right 💌	Edit Attributes
Vjust	normal 🗾 💌	Pin Attributes
Size:	100	Pin= 2
🔲 Hidden	Net	ERC= output
OK Cancel		If unconnected: Float= UniqueNet Modeled Pin

6. Guarde o simbolo (File > Save > Close)

7. Crie um novo circuito chamado "oscilador" (File > New) e instancie 5 objectos "inversor" com o menu Draw > Get new part > libraries symbols.slb > inversor

Feche a malha, coloque uma variavel global VDD para levar a alimentação (5V) para os inversores e coloque 2 condições iniciais (.IC) para evitar o ponto meta-estável do circuito ...

8. Simule a resposta temporal do circuito (Analysis > Setup > Transient > Final Time=10ns, print step=0.1ns)

Determine o periodo de oscilação T e compare com o valor teórico

D. LAYOUT

Utilizando o programa LASI e as regras de layout da tecnologia Orbit CN20, faça o layout do inversor de forma a caber numa celula standard (ver figura)

