ELECTRONICA II

2

Guia do trabalho 2 – Estudo do comportamento de amplificadores com a variação da frequência do sinal de entrada

1 sem. 2006-2007 trab2.doc / trab2.pdf

Objectivos: Este trabalho tem como objectivos o estudo do comportamento de algumas configurações amplificadroras com a variação da frequência do sinal de entrada.

Componentos: NPN – 2N2222, ou BC547

• Para os cálculos assume $\beta = 200$, $V_A = 200$ V. $C\pi = 25$ pF, $C\mu = 8$ pF

1 Monte o circuito da figura 1.

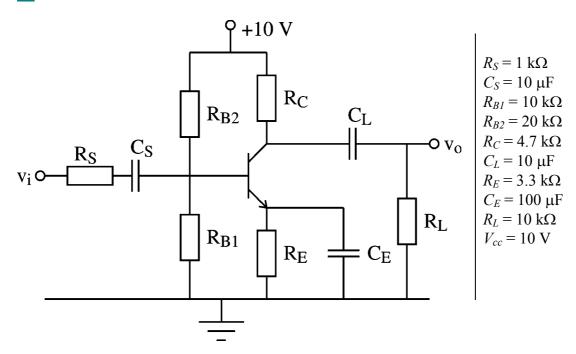


Figura 1: Emissor Comum

- (a) Calcule e meça a corrente (I_C) e tensões (V_B , V_E e V_C) de polarização.
- (b) Calcule e meça o ganho do circuito às médias frequências.
- (c) Trace o diagram de Bode do ganho e da fase em funçao da frequência. Comente estas mediçoes.
- (d) Determine as frequências de corte superior e inferior (3dB). Compare estes valores com os valores teóricos.
- (e) Retire C_E do circuito. Repita as alíneas anteriores. Comente.

Monte o amplificador *cascode* da figura 2.

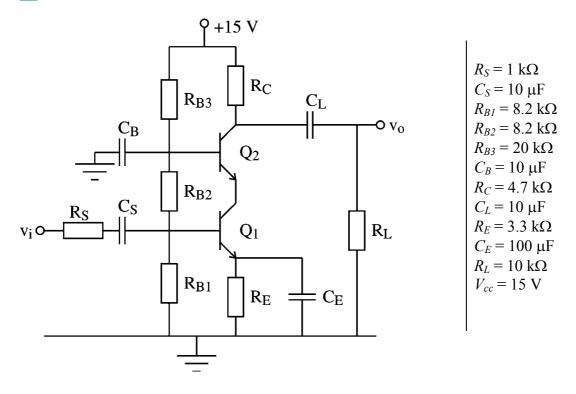
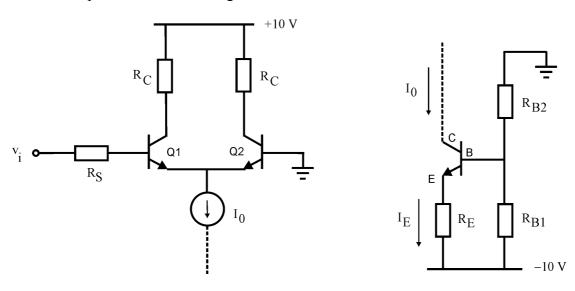



Figura 2: Amplificador Cascode

- (a) Calcule e meça a corrente (I_C) e tensões $(V_{B1}, V_{B2}, V_{E1} \text{ e } V_{C2})$ de polarização.
- (b) Calcule e meça o ganho do circuito às médias frequências.
- (c) Trace o diagram de Bode do ganho e da fase em funçao da frequência. Comente estas mediçoes.
- (d) Determine as frequências de corte superior e inferior (3dB). Compare estes valores com os valores teóricos.
- (e) Compare o circuito com o circuito do Emissor Comum.

Monte o amplificador diferencial da figura 3. Dimensione as resistências da fonte de corrente para uma corrente I_0 igual a 3 mA.

 $R_C = 3.3 \text{ k}\Omega$, $R_S = 1 \text{ k}\Omega$, $V_{cc} = 10 \text{ V}$, $V_{ee} = -10 \text{ V}$.

Figura 3: Par diferencial

- (a) Meça o ganho do circuito às médias frequências. Compare este valor com o valor teórico.
- (b) Trace o diagrama de Bode do ganho e da fase em função da frequência. Comente estas medições.
- (c) Determine as frequências de corte superior e inferior (3 dB). Compare estes valores com os valores teóricos.

Finalmente, explique:

- (1) A função de C_E no circuito 1.
- (2) A vantagem do circuito "cascode" em termos de ganho ou/e largura de banda.
- (3) A vantagem do circuito "par diferencial" em termos de ganho ou/e largura de banda.

Mais informação:

Chapter 7 of Sedra and Smith, Microelectronic Circuits, 4th edition.

Chapter 10 of T.F. Bogart, Electronic Devices and Circuits, 4th edition.

Sebenta de Prof. L. Moura.