
Electronics II

2009-2010 mod. 1

Problem sheet 6

P. Stallinga

Figure 1: System with **negative** feedback. A is the open-loop gain (without feedback), β is the feedback factor.

a) Determine the relation between input signal and output signal, $A_f \equiv V_o/V_i$.

The ideal amplifier ($r_{in} = \infty$, e $r_{out} = 0$) has an open-loop gain of 10⁵ and has poles at 10 Hz, 1 kHz, 100 kHz and 1 MHz.

The feedback is made of resistances (passive elements that do not change the phase) and is given as $\beta = 0.5$.

b) Determine the DC gain.

Determine if the amplifier with feedback is stable (Phase margin: 45°). For this

- c) Make *Bode plots* and *Nyquist plots* and draw conclusions. For what range of frequencies does the system run the risk of oscillating?
- d) For what value of β the system is marginally stable?
- e) Repeat paragraphs a) .. d) for the same system, but with **positive** feedback (see figure below).

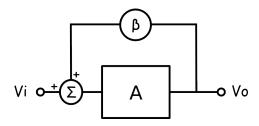


Figure 2: System with positive feedback.