Electronics II Problem sheet 5

P. Stallinga
UAlg
UNIVERSIDADE DO ALGARVE $\underbrace{}_{1979 \mid 2009}$

MIEET 3° ano

- For the (positive) feedback system of Figure 1, determine the relation between V_{i} and V_{0}.

$$
A_{f}=\frac{A}{(1-A \beta)}
$$

- Fill out the table below with gain values $A_{\mathrm{f}} \equiv V_{\mathrm{o}} / V_{\mathrm{i}}$ for combinations $A-\beta$.

$\beta \quad \\) & \(A$	∞	10^{5}	10^{4}	1000	100	10	
-1		1	1	1	1	0.99	0.91
-0.1	10	10	9.99	9.9	9.09	5	0.05
-0.01	100	99.9	99.01	90.91	50	9.09	0.99
-10^{-3}	10^{3}	990.1	909.09	500	90.91	9.9	1
-10^{-4}	10^{4}	9090.91	5000	909.09	99.01	9.99	1
0	∞	10^{5}	10^{4}	1000	100	10	1
+0.1	-10	-10	-10.01	-10.1	-11.11	∞	1.11
+1	-1	-1	-1	-1	-1.01	-1.11	∞

- For an open-loop gain, $A=10^{5}$ with a variation (tolerance) of 5%. Calculate the variation of closed-loop gain for the following betas:

$\beta=0$	$\beta=-0.001$	$\beta=-0.01$	$\beta=-0.1$	$\beta=-1$
5%	0.0495%	0.005%	0.0005%	0.00005%

- The amplifier $\mathrm{A}\left(A=10^{5}\right)$ has a single pole at 10 Hz . Determine the bandwidth of the circuit with feedback of $\beta=-10^{-3}$.

The gain-bandwidth product is constant. Without feedback $A_{\mathrm{v}} \mathrm{x} \Delta f=10^{5} \mathrm{x} 10 \mathrm{~Hz}=1 \mathrm{MHz}$. With feedback of $\beta=-10^{-3}$, the gain becomes (see the table above) 990.1 . The bandwidth therefore is $\Delta f=$ $1 \mathrm{MHz} / 990.1=1.01 \mathrm{kHz}$. Another way of calculating is: $\Delta f=\Delta f_{0}(1-A \beta)=10 \mathrm{~Hz} \mathrm{x}\left(1+10^{5} \times 10^{3}\right)=$ 1010 Hz .

