

Figure 1: *System with feedback.* A *is the open-loop gain (without feedback),* β *is the feedback factor.*

- For the (positive) feedback system of Figure 1, determine the relation between V_i and V_o .
- Fill out the table below with gain values $A_{\rm f} \equiv V_{\rm o}/V_{\rm i}$ for combinations A- β .

$\beta \setminus A$	x	10 ⁵	10 ⁴	1000	100	10	1
-1							
-0.1							
-0.01							
-10 ⁻³							
-10-4							
0							
+0.1							
+1							

• For an open-loop gain, $A = 10^5$ with a variation (tolerance) of 5%. Calculate the variation of closed-loop gain for the following betas:

$\beta = 0$	$\beta = -0.001$	$\beta = -0.01$	$\beta = -0.1$	$\beta = -1$

• The amplifier A ($A = 10^5$) has a single pole at 10 Hz. Determine the bandwidth of the circuit with feedback of $\beta = -10^{-3}$.