

Electrónica I

Mestrado Integrado em Eng. Electrónica e Telecomunicações

Transístores MOSFET I

Curvas Características

INTRODUÇÃO

Neste trabalho pretende-se usar o SPICE para traçar as curvas características de um MOSFET do tipo n (NMOS) com $W=L=20\mu m$.

Na zona linear

 a)ID versus VGS para 0<VGS<5V e VDS=0.1V ; VGS em incrementos de 0.1V
 b)ID versus VDS para -0.1V<VDS<+0.1V e VGS=1, 2, 3, 4, 5V ; VDS em incrementos de 0.01V

2. Na zona de saturação

a)ID versus VGS para 0<VGS<5V e VDS=5V ; VGS em incrementos de 0.1V b)ID versus VDS para 0<VDS<5V e VGS=0,1, 2, 3, 4, 5V; VDS em incrementos de 0.1V

REALIZAÇÃO

Como exemplo, apresentam-se agora os passos a seguir para realizar as alineas 1a) e 1b). O procedimento é identico para as alineas 2a) e 2b).

1. Assumindo que o circuito a realizar tem o seguinte diagrama esquemático com os nódos indicados na figura (a linha de referencia é sempre o nódo 0),

construa a *netlist* do circuito. Utilize o transistor CMOSN da livraria WCN20.

2. Realizada a *netlist*, é agora necessário configurar a analise no menu Analysis > Setup ...

Analysis Setup						
Enabled		Enabled				
	AC Sweep		Options	Close		
	Load Bias Point		Parametric			
	Save Bias Point		Sensitivity			
	DC Sweep		Temperature			
	Monte Carlo/Worst Case		Transfer Function			
	Bias Point Detail		Transient			
	Digital Setup					

Clique em DC Sweep...

DC Sweep		×
Swept Var. Type	Name:	VGG
Voltage Source		
C Temperature	Model Type:	
C Current Source	Model Nome:	
O Model Parameter	Mouername.	I
C Global Parameter	Param. Name:	
Sweep Type	Start Value:	0
• Linear	End Value:	5
O Uctave	End Value.	
C Decade	Increment:	10.1
C Value List	Values:	
Nested Sweep	ОК	Cancel

3. Active o simulador (Analysis> Simulate...):

Depois de alguns avisos (warnings) mas nunca erros, a simulação está completa.

O processador gráfico PROBE deve abrir automaticamente. Senão, também pode abrir manualmente no menu Analysis->Run Probe... Este programa é uma espécie de osciloscópio em software...

Para ver o resultado da simulação faça Trace->Add...ID(M1) porque é isso que quer ver, a corrente no dreno do transistor M1 em função de VGS, não é?

O resultado da simulação é o que esperava? Os valores simulados coincidem com os valores teóricos?

Obviamente pode ver com este programa quaisquer corrente ou tensão em todos os nodos (pontos) do circuito. Experimente à vontade...

4. Para o segundo varrimento, ID versus VDS, a *netlist* é apenas ligeiramente diferente:

DC Sweep		×
Swept Var. Type		VDD
Voltage Source	Name:	
C Temperature	bd a dal Tropas	
C Current Source	моден туре:	<u> </u>
C Model Parameter	Model Name:	1
C Global Parameter	Param. Name:	
Sweep Type	Start Value:	-0.1
Einear		
C Octave	End Value:	+0.1
C Decade	Increment:	0.01
C Value List	Values:	
Nested Sweep	OK	Cancel

GUIA DO LABORATÓRIO DE ELECTRÓNICA I — Transistores MOSFET I

DC Nested Sweep		×			
Swept Var. Type Voltage Source	Name:	VGG			
C Temperature C Current Source C Model Paramete C Global Parameter	Model Type: Model Name: Param. Name:				
Sweep Type © Linear © Octave © Decad © Value List	Start Value: End Value: Increment: ∀alues:	1 5 1			
Main Sweep OK Cancel					

Nota que agora estamos a fazer um **duplo** varrimento: para cada valor de VGG, 1V,2V, ...,5V fazemos um varrimento de VDD. O resultado é um conjunto de curvas:

É isto que esperava? Como é que se está a comportar o transistor? Faz sentido chamar-se a esta região de funcionamento zona linear?

6. Repete as simulações agora na zona de saturação (alineas 2a e 2b)