

Electrónica I

Mestrado Integrado em Eng. Electrónica e Telecomunicações

Díodos I

Curva Característica com PSPICE

INTRODUÇÃO

Neste trabalho pretende-se usar o PSPICE para traçar as curvas características de um díodo.

Apresentam-se os passos a seguir para realizar a curva característica de um díodo 1N4148, fazendo variar a tensão nos terminais do diodo entre 0 e 1V com incrementos de 0.01V:

REALIZAÇÃO

1. O circuito a realizar tem o seguinte diagrama esquemático com os nódos indicados na figura (a linha de referencia é sempre o nódo 0),

Utilize o diodo 1N4148 da livraria EDIODE.

Gere a netlist ...

Analysis > Electrical Rule Check Analysis > Create Netlist

Analysis Setup 🔀					
Enabled		Enabled			
	AC Sweep		Options	Close	
	Load Bias Point		Parametric		
	Save Bias Point		Sensitivity		
	DC Sweep		Temperature		
	Monte Carlo/Worst Case		Transfer Function		
	Bias Point Detail		Transient		
	Digital Setup				

2. Realizada a *netlist*, é agora necessário configurar a analise no menu Analysis > Setup ...

Clique em DC Sweep...

DC Sweep		×
Swept Var. Type Voltage Source	Name:	V1
C Temperature C Current Source C Model Parameter C Global Parameter	Model Type: Model Name: Param. Name:	
Sweep Type C Linear C Octave C Decade C Value List	Start Value: End Value: Increment: Values:	0
Nested Sweep	OK	Cancel

3. Active o simulador (Analysis> Simulate...):

Depois de alguns avisos (warnings) mas nunca erros, a simulação está completa.

O processador gráfico PROBE deve abrir automaticamente. Senão, também pode abrir manualmente no menu Analysis->Run Probe... Este programa é uma espécie de osciloscópio em software...

Se o gráfico não aparecer automáticamente, para ver o resultado da simulação faça Trace->Add...I(D1)

porque é isso que quer ver, a corrente do diodo, não é?

O resultado da simulação é o que esperava? Os valores simulados coincidem com os valores teóricos?