LAB 06A

Cuk Converter

Nominal Values

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{d}}=8.5 \mathrm{~V} \\
& \mathrm{~L}_{1}=\mathrm{L}_{2}=10 \mu \mathrm{H} \\
& \mathrm{R}_{\mathrm{L} 1}=\mathrm{R}_{\mathrm{L} 2}=10 \mathrm{~m} \Omega \\
& \mathrm{C}_{1}=\mathrm{C}_{2}=100 \mu \mathrm{~F} \\
& \mathrm{f}_{\mathrm{s}}=100 \mathrm{kHz} \\
& \text { switch duty ratio } \mathrm{D}=0.75
\end{aligned}
$$

1. In steady state, obtain the following wave forms:
(a) $\mathrm{V}_{\mathrm{L} 1}, \mathrm{v}_{\mathrm{L} 2}, \mathrm{i}_{\mathrm{L} 1}, \mathrm{i}_{\mathrm{L} 2}$
(b) v_{o}, i_{o}, i_{C}

Check if the V_{0}, I_{0}, I_{d} results agree with the analytical calculations. Repeat for $\mathrm{D}=0.25$.
2. Obtain the peak-to-peak ripple in the output voltage and check to see if results agree with the analytical calculations.
3. Obtain the rms value of the current through L_{2} and check to see if results agree with the analytical calculations.
4. Obtain the rms value of the current through L_{1}

