EXAMPLE 4

1-Phase Thyristor Inverter

Nominal Values:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{s}}(\mathrm{rms})=120 \mathrm{~V} \text { at } 60 \mathrm{~Hz} \\
& \mathrm{~L}_{\mathrm{s} 1}=0.2 \mathrm{mH} \\
& \mathrm{~L}_{\mathrm{s} 2}=1.0 \mathrm{mH} \\
& \mathrm{~L}_{\mathrm{d}}=20 \mathrm{mH} \\
& \mathrm{E}=88 \mathrm{~V}(\mathrm{dc}) \\
& \text { delay angle } \alpha=135^{\circ}
\end{aligned}
$$

Problems

1. (a) Obtain $\mathrm{v}_{\mathrm{S}}, \mathrm{v}_{\mathrm{d}}$ and i_{d} waveforms using Thyinv1.
(b) Obtain v_{S} and is waveforms.
2. Calculate I_{s}, $\% \mathrm{THD}$ in the input current, the input displacement power factor and the input power factor.
3. Study the startup of inverter operation. Increase the delay angle to a value close to 180° (for example, 150°) and look at the $\mathrm{v}_{\mathrm{s}}, \mathrm{v}_{\mathrm{d}}$ and i_{d} waveforms. Repeat the above procedure by reducing α slowly to its nominal value of 135°. Plot the average dc current I_{d} versus α.

Reference: Section 6-3-4, pages 135-138.

PSpice Schematic: Thyinv1

[Copyright © 2003, Adapted with permission from "Power Electronics Modeling Simplified using PSpice ${ }^{\text {TM }}$ (Release 9)": http://www.mnpere.com]

