
## LAB 02 - THYRISTOR RECTIFIER BRIDGE



- 1. (a) Obtain v<sub>s</sub>, v<sub>d</sub> and i<sub>d</sub> waveforms.
  - (b) Obtain v<sub>s</sub> and i<sub>s</sub> waveforms.
  - (c) Obtain v<sub>m</sub> and i<sub>s</sub> waveforms.
- 2. Replace  $R_{\text{load}}$  and  $L_{\text{d}}$  by a DC current source  $I_{\text{d}}$  equal to average value of  $i_{\text{d}}.$  Make  $L_{s1}{=}L_{s2}{=}0$

By means of Fourier analysis of  $i_s$ , calculate  $I_{sRMS}$ , the first harmonic component  $I_{s1RMS}$ , %THD in the input current, the input displacement power factor (DSP) and the input power factor PF. Compare with the theoretical values.

- 3. Make  $L_{s1}=0.2$ mH and  $L_{s2}=1.0$  mH. From the plots, obtain the commutation interval u. Compare with the theoretical value.
- 4. Verify that average DC value  $V_d$  is given by

$$V_{d} = 0.9 V_{s} \cos \alpha - \frac{2\omega L_{s}}{\pi} I_{d}.$$

5. Make delay angle  $\alpha$ =135°. Verify that average DC value V<sub>d</sub> is now negative