Base de dados (2005/2006)

Fernando Lobo

- Livro de texto: "A First Course in Database Systems" (J. Ullman, J. Widom)
- Avaliação: trabalho (30%), exame (70%)
- Objectivo: técnicas de modelação e o uso de sistemas de gestão de base de dados (SGBDs) para o desenvolvimento de aplicações.

Programa resumido

- Conceitos introdutórios
- Modelo Entidade-Associação (E/A)
- Normalização
- Álgebra relacional
- SQL
- SQL + linguagem de programação
- Transacções

Trabalho prático

Consiste em 3 partes:

- 1. escolha de um tema
- 2. modelação com E/A
- 3. implementação SQL num SGBD

Temas escolhidos pelos alunos

- 1. estabelecimento prisional
- 2. campeonatos de surf
- 3. vinhos de portugal
- 4. gestão de namoradas
- 5. ...

O que é um Sistema de Gestão de Base de Dados?

É um sistema que:

- 1. armazena e manipula grandes volumes de informação.
- 2. suporta acesso simultâneo por vários utilizadores.
- 3. o acesso aos dados é eficiente, seguro e atómico.

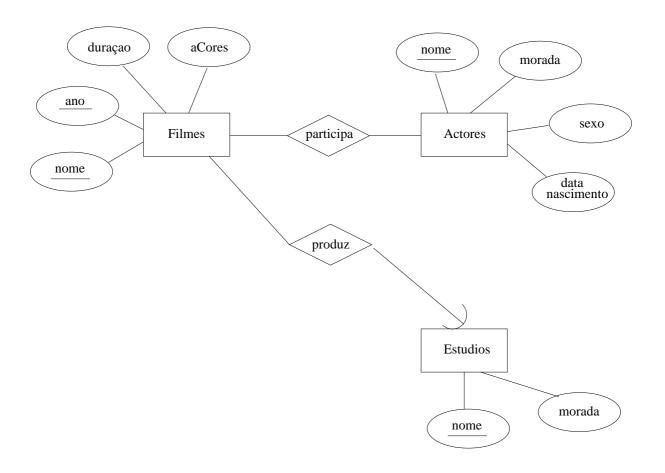
Exemplo: bancos

- Informação: contas, clientes, saldos, movimentos, etc.
- Grandes volumes: gigabytes.
- Multi-utilizador: várias pessoas/programas acedem à BD em simultâneo
 - é preciso ter cuidado!

Várias facetas no estudo de SGBD

- 1. Análise/Modelação
- 2. Programação
 - SQL + linguagem de programação
- 3. Implementação de SGBDs

Apenas estudamos os pontos (1) e (2)


Um SGBD é um tipo de software

- Compra-se (pode ser de graça), instala-se, configura-se
- Disponível para todo o tipo de computadores.

Principais SGBDs

- Oracle, Informix, Sybase são das maiores empresas de software do mundo
- DB2 da IBM e SQL-Server da Microsoft
- Microsoft Access para sistemas pequenos
- PostgreSQL e MySQL (open source)

Análise/Modelação (Modelo Entidade-Associação)

Conversão para o modelo relacional

Filme(nome, ano, duração, aCores, estúdio)

Actor(nome, morada, sexo, dataNascimento)

Participa (actor, nomeFilme, anoFilme)

Estúdio(nome, morada)

Normalização

- Eliminar redundância nas relações de modo a que não haja anomalias quando se modifica a BD.
- Exemplo concreto: ter de especificar a mesma informação várias vezes.

Álgebra relacional e SQL

- Álgebra relacional permite manipular relações (tabelas).
- Os operandos são relações e os resultados são relações.
- SQL é uma implementação desta álgebra.

Exemplo Natural Join (⋈)

Filmes:

nome	ano	estudio
Star Wars	1977	Fox
Pocahontas	1998	Disney
King Kong	1933	MGM
Lion King	1997	Disney

Estudios:

estudio	morada	
Fox	Elm St.	
Disney	Pine St.	
MGM	Oak Dr.	

Filmes ⋈ Estudios

nome	ano	estudio	morada
Star Wars	1977	Fox	Elm St.
Pocahontas	1998	Disney	Pine St.
King Kong	1933	MGM	Oak Dr.
Lion King	1997	Disney	Pine St.

Manipulação de dados com SQL

- Quais os filmes a preto e branco em que participou o Jack Nicholson?
- Solução possível:
 - 1. Encontrar todos os filmes a preto e branco.
 - 2. Encontrar todos os filmes do Jack Nicholson.
 - 3. Fazer a intersecção dos resultados.

Manipulação de dados com SQL (cont.)

```
SELECT nome, ano
FROM Filmes
WHERE aCores = FALSE
)
INTERSECT
(
SELECT nomeFilme, anoFilme
FROM Participa
WHERE nomeActor = 'Jack Nicholson'
);
```