

Cross-site scripting (XSS) 1 / 5

Cross-site scripting (XSS)
In this section, we'll explain what cross-site scripting is, describe the different
varieties of cross-site scripting vulnerabilities, and spell out how to find and prevent
cross-site scripting.

What is cross-site scripting (XSS)?
Cross-site scripting (also known as XSS) is a web security vulnerability that allows
an attacker to compromise the interactions that users have with a vulnerable
application. It allows an attacker to circumvent the same origin policy, which is
designed to segregate different websites from each other. Cross-site scripting
vulnerabilities normally allow an attacker to masquerade as a victim user, to carry
out any actions that the user is able to perform, and to access any of the user's data.
If the victim user has privileged access within the application, then the attacker might
be able to gain full control over all of the application's functionality and data.

How does XSS work?
Cross-site scripting works by manipulating a vulnerable web site so that it returns
malicious JavaScript to users. When the malicious code executes inside a victim's
browser, the attacker can fully compromise their interaction with the application.

XSS proof of concept
You can confirm most kinds of XSS vulnerability by injecting a payload that causes
your own browser to execute some arbitrary JavaScript. It's long been common
practice to use the alert() function for this purpose because it's short, harmless,
and pretty hard to miss when it's successfully called. In fact, you solve the majority of
our XSS labs by invoking alert() in a simulated victim's browser.

Unfortunately, there's a slight hitch if you use Chrome. From version 92 onward (July
20th, 2021), cross-origin iframes are prevented from calling alert(). As these are
used to construct some of the more advanced XSS attacks, you'll sometimes need to
use an alternative PoC payload. In this scenario, we recommend
the print() function. If you're interested in learning more about this change and
why we like print(), check out our blog post on the subject.

As the simulated victim in our labs uses Chrome, we've amended the affected labs
so that they can also be solved using print(). We've indicated this in the
instructions wherever relevant.

Cross-site scripting (XSS) 2 / 5

What are the types of XSS attacks?
There are three main types of XSS attacks. These are:

• Reflected XSS, where the malicious script comes from the current HTTP
request.

• Stored XSS, where the malicious script comes from the website's database.
• DOM-based XSS, where the vulnerability exists in client-side code rather than

server-side code.

Reflected cross-site scripting
Reflected XSS is the simplest variety of cross-site scripting. It arises when an
application receives data in an HTTP request and includes that data within the
immediate response in an unsafe way.

Here is a simple example of a reflected XSS vulnerability:

https://insecure-
website.com/status?message=All+is+well.

<p>Status: All is well.</p>

The application doesn't perform any other processing of the data, so an attacker can
easily construct an attack like this:

https://insecure-
website.com/status?message=<script>/*+Bad+stuff+here...
+*/</script>

<p>Status: <script>/* Bad stuff here... */</script></p>

If the user visits the URL constructed by the attacker, then the attacker's script
executes in the user's browser, in the context of that user's session with the
application. At that point, the script can carry out any action, and retrieve any data, to
which the user has access.

Read	more	

Reflected cross-site scriptingCross-site scripting cheat sheet

Stored cross-site scripting

Cross-site scripting (XSS) 3 / 5

Stored XSS (also known as persistent or second-order XSS) arises when an
application receives data from an untrusted source and includes that data within its
later HTTP responses in an unsafe way.

The data in question might be submitted to the application via HTTP requests; for
example, comments on a blog post, user nicknames in a chat room, or contact
details on a customer order. In other cases, the data might arrive from other
untrusted sources; for example, a webmail application displaying messages received
over SMTP, a marketing application displaying social media posts, or a network
monitoring application displaying packet data from network traffic.

Here is a simple example of a stored XSS vulnerability. A message board application
lets users submit messages, which are displayed to other users:

<p>Hello, this is my message!</p>

The application doesn't perform any other processing of the data, so an attacker can
easily send a message that attacks other users:

<p><script>/* Bad stuff here... */</script></p>

Read	more	

Stored cross-site scriptingCross-site scripting cheat sheet

DOM-based cross-site scripting
DOM-based XSS (also known as DOM XSS) arises when an application contains
some client-side JavaScript that processes data from an untrusted source in an
unsafe way, usually by writing the data back to the DOM.

In the following example, an application uses some JavaScript to read the value from
an input field and write that value to an element within the HTML:

var search = document.getElementById('search').value;
var results = document.getElementById('results');
results.innerHTML = 'You searched for: ' + search;

If the attacker can control the value of the input field, they can easily construct a
malicious value that causes their own script to execute:

You searched for: <img src=1 onerror='/* Bad stuff
here... */'>

Cross-site scripting (XSS) 4 / 5

In a typical case, the input field would be populated from part of the HTTP request,
such as a URL query string parameter, allowing the attacker to deliver an attack
using a malicious URL, in the same manner as reflected XSS.

Read	more	

DOM-based cross-site scripting

What can XSS be used for?
An attacker who exploits a cross-site scripting vulnerability is typically able to:

• Impersonate or masquerade as the victim user.
• Carry out any action that the user is able to perform.
• Read any data that the user is able to access.
• Capture the user's login credentials.
• Perform virtual defacement of the web site.
• Inject trojan functionality into the web site.

Impact of XSS vulnerabilities
The actual impact of an XSS attack generally depends on the nature of the
application, its functionality and data, and the status of the compromised user. For
example:

• In a brochureware application, where all users are anonymous and all
information is public, the impact will often be minimal.

• In an application holding sensitive data, such as banking transactions, emails,
or healthcare records, the impact will usually be serious.

• If the compromised user has elevated privileges within the application, then
the impact will generally be critical, allowing the attacker to take full control of
the vulnerable application and compromise all users and their data.

Read	more	

Exploiting cross-site scripting vulnerabilities

How to find and test for XSS vulnerabilities
The vast majority of XSS vulnerabilities can be found quickly and reliably using Burp
Suite's web vulnerability scanner.

Manually testing for reflected and stored XSS normally involves submitting some
simple unique input (such as a short alphanumeric string) into every entry point in
the application, identifying every location where the submitted input is returned in
HTTP responses, and testing each location individually to determine whether

Cross-site scripting (XSS) 5 / 5

suitably crafted input can be used to execute arbitrary JavaScript. In this way, you
can determine the context in which the XSS occurs and select a suitable payload to
exploit it.

Manually testing for DOM-based XSS arising from URL parameters involves a
similar process: placing some simple unique input in the parameter, using the
browser's developer tools to search the DOM for this input, and testing each location
to determine whether it is exploitable. However, other types of DOM XSS are harder
to detect. To find DOM-based vulnerabilities in non-URL-based input (such
as document.cookie) or non-HTML-based sinks (like setTimeout), there is
no substitute for reviewing JavaScript code, which can be extremely time-
consuming. Burp Suite's web vulnerability scanner combines static and dynamic
analysis of JavaScript to reliably automate the detection of DOM-based
vulnerabilities.

REFERENCE

• https://portswigger.net/web-security/cross-site-scripting

